

Re-Entry Simulation and Landing Area For

YES2

(2nd Young Engineers' Satellite)

www.YES2.info

Silvia Calzada (stagiaire ESA/ ESTEC)

Thesis Objectives

- Development of REST (Re-Entry Simulator Tool)
- Investigations with REST
 Calculations of trajectory and landing area
- Conclusions
 - 1) To choose the best place to land
 - 2) Mission recommendations to minimize landing area

Re-Entry Simulator Tool

The REST simulator includes many parameters:

- Inertial <-> Fix to Earth reference system
- Geodetic <-> Geocentric coordinates
- Rotational velocity of the Atmosphere
- Effect of the rotation of the Earth
- Bulge effect of the Earth
- Spherical harmonic expansion for the Earth's gravitational potential, J2 (zonal)
- Heat flux, temperature in the wall
- Drag coefficient for different regimens
- Flow regimen
- Density model NRLMSISE-00
- Wind model HWM-93
- G2S density, wind, gravity wave model
- Landing area (Monte Carlo Simulations)

Re-Entry Simulator Tool

The REST simulator includes

- Inertial <-> Fix to Earth reference system
- Geodetic <-> Geocentric coordinates
- Rotational velocity of the Atmosphere
- Effect of the rotation of the Earth
- Bulge effect of the Earth
- Spherical harmonic expansion for the Earth's gravitational potential, J2 (zonal)
- Heat flux, temperature in the wall
- Drag coefficient for different regimes
- Flow regime status
- Density model NRLMSISE-00
- Wind model HWM-93
- G2S atmospheric model with the latest meteorological conditions
- Landing area (Monte Carlo Simulations)

<u>REST</u>

Altitude vs. Distance

Landing Area Depending On Re-Entry Conditions v₀ and γ

Re-Entry Concerns

- 1) Heat flux & Temperature in the wall
- 2) Supercritical Reynolds number Turbulence flow in subsonic flow regime

3) Because low ballistic coefficient of the capsule, the peak of the:

wall's temperature, heat flux, dissipated power, gee-load

are happening in the upper part of the re-entry (transition from rarefied gas and continuum flow regime)

Mission recommendations to minimize landing area

Orbit: highest apogee, lowest perigee (largest length of tether)

Tether cut time in apogee and descending part of the orbit

Steepest entry angle

Optimal entry time: 00:00-03:00 am

Optimal day: around 21th June Knowledge weather conditions Heavy capsule